- (9) American Osteopathic Board of Nuclear Medicine; or
- (b) Has had classroom and laboratory training and experience as follows:
- (1) 200 hours of classroom and laboratory training that includes:
- (i) Radiation physics and instrumentation:
 - (ii) Radiation protection;
- (iii) Mathematics pertaining to the use and measurement of radioactivity;
- (iv) Radiation biology; and
- (v) Radiopharmaceutical chemistry; and
- (2) One year of full time experience as a radiation safety technologist at a medical institution under the supervision of the individual identified as the Radiation Safety Officer on a Commission or Agreement State license that authorizes the medical use of byproduct material; or
- (c) Be an authorized user identified on the licensee's license.
- [51 FR 36951, Oct. 16, 1986, as amended at 59 FR 61786, Dec. 2, 1994]

§35.901 Training for experienced Radiation Safety Officer.

An individual identified as a Radiation Safety Officer on a Commission or Agreement State license before October 1, 1986 need not comply with the training requirements of §35.900.

§35.910 Training for uptake, dilution, and excretion studies.

Except as provided in §§ 35.970 and 35.971, the licensee shall require the authorized user of a radiopharmaceutical in § 35.100(a) to be a physician who:

- (a) Is certified in:
- (1) Nuclear medicine by the American Board of Nuclear Medicine;
- (2) Diagnostic radiology by the American Board of Radiology; or
- (3) Diagnostic radiology or radiology by the American Osteopathic Board of Radiology;
- (4) Nuclear medicine by the Royal College of Physicians and Surgeons of Canada; or
- (5) American Osteopathic Board of Nuclear Medicine in nuclear medicine; or
- (b) Has had classroom and laboratory training in basic radioisotope handling techniques applicable to the use of pre-

pared radiopharmaceuticals, and supervised clinical experience as follows:

- (1) 40 hours of classroom and laboratory training that includes:
- (i) Radiation physics and instrumentation;
 - (ii) Radiation protection;
- (iii) Mathematics pertaining to the use and measurement of radioactivity;
 - (iv) Radiation biology; and
- (v) Radiopharmaceutical chemistry;
- (2) 20 hours of supervised clinical experience under the supervision of an authorized user and that includes:
- (i) Examining patients or human research subjects and reviewing their case histories to determine their suitability for radioisotope diagnosis, limitations, or contraindications;
- (ii) Selecting the suitable radiopharmaceuticals and calculating and measuring the dosages;
- (iii) Administering dosages to patients or human research subjects and using syringe radiation shields:
- (iv) Collaborating with the authorized user in the interpretation of radioisotope test results; and
- (v) Patient or human research subject followup; or
- (c) Has successfully completed a sixmonth training program in nuclear medicine as part of a training program that has been approved by the Accreditation Council for Graduate Medical Education and that included classroom and laboratory training, work experience, and supervised clinical experience in all the topics identified in paragraph (b) of this section.

[51 FR 36951, Oct. 16, 1986, as amended at 59 FR 61786, Dec. 2, 1994]

§35.920 Training for imaging and localization studies.

Except as provided in §35.970 or 35.971, the licensee shall require the authorized user of a radiopharmaceutical, generator, or reagent kit in §35.200(a) to be a physician who:

- (a) Is certified in:
- (1) Nuclear medicine by the American Board of Nuclear Medicine;
- (2) Diagnostic radiology by the American Board of Radiology;
- (3) Diagnostic radiology or radiology by the American Osteopathic Board of Radiology;

§ 35.930

- (4) Nuclear medicine by the Royal College of Physicians and Surgeons of Canada; or
- (5) American Osteopathic Board of Nuclear Medicine in nuclear medicine; or
- (b) Has had classroom and laboratory training in basic radioisotope handling techniques applicable to the use of prepared radiopharmaceuticals, generators, and reagent kits, supervised work experience, and supervised clinical experience as follows:
- (1) 200 hours of classroom and laboratory training that includes:
- (i) Radiation physics and instrumentation:
 - (ii) Radiation protection;
- (iii) Mathematics pertaining to the use and measurement of radioactivity;
- (iv) Radiopharmaceutical chemistry; and
 - (v) Radiation biology; and
- (2) 500 hours of supervised work experience under the supervision of an authorized user that includes:
- (i) Ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys:
- (ii) Calibrating dose calibrators and diagnostic instruments and performing checks for proper operation of survey meters:
- (iii) Calculating and safely preparing patient or human research subject dosages;
- (iv) Using administrative controls to prevent the misadministration of byproduct material;
- (v) Using procedures to contain spilled byproduct material safely and using proper decontamination procedures; and
- (vi) Eluting technetium-99m from generator systems, measuring and testing the eluate for molybdenum-99 and alumina contamination, and processing the eluate with reagent kits to prepare technetium-99m labeled radiopharmaceuticals; and
- (3) 500 hours of supervised clinical experience under the supervision of an authorized user that includes:
- (i) Examining patients or human research subjects and reviewing their case histories to determine their suitability for radioisotope diagnosis, limitations, or contraindications;

- (ii) Selecting the suitable radiopharmaceuticals and calculating and measuring the dosages;
- (iii) Administering dosages to patients or human research subjects and using syringe radiation shields;
- (iv) Collaborating with the authorized user in the interpretation of radioisotope test results; and
- (v) Patient or human research subject followup; or
- (c) Has successfully completed a sixmonth training program in nuclear medicine that has been approved by the Accreditation Council for Graduate Medical Education and that included classroom and laboratory training, work experience, and supervised clinical experience in all the topics identified in paragraph (b) of this section.
- [51 FR 36951, Oct. 16, 1986, as amended at 59 FR 61786, Dec. 2, 1994]

§35.930 Training for therapeutic use of unsealed byproduct material.

Except as provided in §35.970, the licensee shall require the authorized user of radiopharmaceuticals in §35.300 to be a physician who:

- (a) Is certified by:
- (1) The American Board of Nuclear Medicine;
- (2) The American Board of Radiology in radiology, therapeutic radiology, or radiation oncology;
- (3) Nuclear medicine by the Royal College of Physicians and Surgeons of Canada; or
- (4) The American Osteopathic Board of Radiology after 1984; or
- (b) Has had classroom and laboratory training in basic radioisotope handling techniques applicable to the use of therapeutic radiopharmaceuticals, and supervised clinical experience as follows:
- (1) 80 hours of classroom and laboratory training that includes:
- (i) Radiation physics and instrumentation:
 - (ii) Radiation protection;
- (iii) Mathematics pertaining to the use and measurement of radioactivity; and
 - (iv) Radiation biology; and
- (2) Supervised clinical experience under the supervision of an authorized user at a medical institution that includes: